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Abslracl-The paper presents an analysis of a system of parallel structural columns interlinked by elastic
braces. and has the particular aim of determining critical or buckling load levels. The analysis reduces the
problem to the solution of a pair of simultaneous difference (recurrence) equations. The nature of this
solution is investigated and buckling conditions established. Charts are presented which cover the basic
solutions for different numbers and stiffness of braces and for different numbers of columns.

I. INTRODUCTION
In a recent paper on the structural design of column bracing Medland [I] considers critical
(buckling) loads for sets of interbraced compression members. The numerical procedure used is
a stiffness matrix formulation which incorporates the weakening effect of axial compression on
the column stiffnesses [2-4]. The structures analysed include a class consisting of a set of
parallel columns which have uniform cross-sectional properties and axial compressive force
throughout their length and are inter-connected by elastic spring braces of equal stiffness,
spaced so as to divide the length into equal parts (Fig. I). Only buckling in the plane of the
structure is considered. Each column is simply supported at both ends.

The most common example of such a structure is the set of compression chords of a parallel
truss roofing system. Bracing against chord buckling in the roof plane is provided by purlins
which interlink the chords and normally extend to a cross-braced bay which acts as an effective
anchorage. The chords are usually the same size and the purlins are placed at regular intervals
within the length. The chords are flexible and the assumed end rotational support condition is
relatively unimportant. Simple support is conservative. Reference [I] establishes that the
assumption of uniform axial load within the column length is valid and not grossly conservative
despite the "parabolic" variation which is actually present.

This paper presents an alternative to the numerical approach [I]. The same basic structure
type is considered by means of continuity criteria and the use of difference equations in a
manner similar to that presented by Miles [5] for a vibrating beam.

The use of difference equations in this context is certainly not new (e.g. Bleich [6]) but
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Fig. I. Multi-column structure system.
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the method. which exploits to the full the repetitive nature of the structure. deserves to be
more widely used. The case of a single column has also been treated by Budiansky. Seide and
Weinberger[7J. who used a variational technique which lead to a buckling condition expressed
as an infinite series which they had the mathematical insight to express in closed form. The
extension to a set of parallel columns is new.

2. GOVERNING DIFFERENCE EQUATIONS
The structure considered is shown in Fig. I. The same uniform axial compressive load P is

applied to each column. The springs all have the same linear elastic stiffness K and are attached
at equally spaced nodes numbered fl = I. N. The M columns are identified by the variable III

with m =0 and m = M + I being "foundation columns". The general column inter-brace
element. 11. lies between nodes fl and 11 + 1 on column m.

With the sign convention shown in Fig. 2 the bending moment, .11. and shear force. S. within
an element are expressed in terms of lateral deflection. y. by eqns (I) and (2) respectively.

vtt = £1 y".

S = j{' + P y' = £1 y'" + Py',

(I)

(2)

where E is Young's modulus and 1 the second moment of area relevant to lateral bending. The
differential equation governing equilibrium within an element is

or

where

£1 v" + P y" =O. (3)

LS)

The simply supported end conditions mean that both .#. and yare zero at the extreme nodes
II = 0 and II = N + I of each column. Across each internal node there must be continuity of
deflection. slope and bending moment, while a discontinuity of shearing force must develop to
accommodate the spring reaction at that node.

An appropriate form for the general solution of eqn (4) within the element fl. III is

Yn.m An.mfa sin Ax x sin Aalla + BIl.m[a sinA(a - x)- (a - x) sin Aa I/a
+ C.m x/a + Dn.m(a - Xl/a. (61

y
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Fig. 2. Sign convention for Bending Moment and Shearing Forces.
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where x is a local coordinate for which x =0 at node n,m and x =a at node n + I,m. The terms
containing An•m and Bn•m in eqn (6) vanish at x = 0 and x = a. Thus the deflection at node n, m
is Dn.m and that at node n + I,m is Cn•m• Continuity of displacement at node n + I,m is therefore
expressed by

Cn•m =Dn+l.m. (7)

The terms containing Cn•m and Dn.m in eqn (6) are linear in x and do not contribute to the
bending moment At (eqn 1). Continuity of At across node n + l,m is expressed by

Thus, either

or

A2EI sin Aa An.m== A2 EI sin Aa Bn+l •m.

sin Aa == 0,

(8)

(9)

(10)

Eqn (9) corresponds to the axial load having reached the Euler buckling load of the
inter-nodal length a, a load at which the structure is capable of buckling without extending the
springs. Provided P is less than that value, eqn (10) must hold.

Continuity of slope at node n,m is governed by eqn (11) which results from equating Yn.m(O)
to Y~-I.m(a) through eqn (6), together with the replacement of C and A parameters in terms D
and Busing eqns (7) and (10).

Bn+l.m[t - sint]- 2Bn.m[t cost - sint] + Bn-I.m[t - sint] +Dn+l .m- 2Dn.m+Dn-I.m = 0, (11)

where

f = Aa. (12)

The shearing force, Sn.m, within element n,m can be obtained from eqn (2) and derivatives of
eqn (6) and again making use of eqns (7) and (10),

(13)

Across the node n,m the shearing forces in elements n - I,m and n,m must balance the spring
reaction to the deflection of node n,m relative to its corresponding nodes on columns m - 1and
m+ 1. With the sign convention of Fig. 2, this balance is expressed as,

Sn-I.m - Sn.m =K(Dn.m- Dn.m- I) + K(Dn.m- Dn.m+Jl. (14)

Equations (13) and (14) give a second relationship between the Band D parameters, namely,

. Ka 3

smt[Bn+l •m- 2Bn.m+ Bn- I •m]- [Dn+l.m - 2Dn.m+Dn-I.m] == t2EI [- Dn.m+1+2Dn.m- Dn.m-d.

(15)

3. SOLUTION OF THE DIFFERENCE EQUATIONS
Equations (11) and (15) are a pair of linear homogeneous difference equations for the Bn•m

and Dn•m parameters. If attention is focussed first on the variation with n it can be seen that a
possible form for the solution of the pair is

(16)
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Substitution into eqns (11) and (15), and the subsequent cancellation of the common factors
sin nO and cos nO lead to

Bm[(I- cosO) (t - sint) - t (1- cost)] + Dm(l- cosO) = 0

and

. ~*
Stnt(l- cosO)Bm- (1- cosO)Dm = -:2 [ - Dm+ 1 +2Dm- Dm - , ],

t

where

The fact that each column is simply supported at the end node n = 0 requires that

Bo.m = Do.m = 0

(17)

(18)

(19)

(20)

and this precludes the cosine form in this problem.
The term on the right hand side of eqn (18) suggests the substitution of the further trial form

sin sin
Bm = B( rna), Dm = D( rna).

cos cos
(21)

Again the cos rna components may be eliminated because the column rn = 0, the "foundation
column", remains straight. Thus

Bo=Do= O.

Equation (17) becomes

B[(I- cosO) (t - sint) - t(l- cost)] +D (1- cosO) = 0,

and eqn (18) takes the form

[2~*(I - cosa ) ]B sint (I - cosO) + D t2 - (1- cos 9) = O.

It can be seen from eqn (24) that the factor

~ = 2~*(I - cosa)

(22)

(23)

(24)

(25)

becomes the effective stiffness of the set of springs in series. The basic brace stiffness ~* is
scaled by 2(1 - cosa ). If the "column" M + I is also a rigid foundation it is clear that
BM + 1 = DM + 1 =0 and thus

i.e.
sin (M + \)a = 0,

a = k1r/(M + \) for k = \,Mt.

(26)

(27)

t A more general foundation condition for column M is provided by using a spring of stiffness /-LK between M and
M + I. This leads to the equation

sin (M + l)a = (1- /-L) sinMa,

of which eqn (26) is a special case. The /-L = 0 case, i.e. no spring outside column M, results in

a = k1r/(2M + I) for k = 1.3, ... (2M -1).
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In order that non-trivial solutions for Band D can exist, the 2x 2 determinant of their
coefficients in eqns (23) and (24) must be zero. Thus

[(1- cosO) (t - sint) - t(l- cost)] [13/t 2
- (1- cosO)] =sint (1- COSO)2. (28)

Equation (28) is a quadratic in (1- cosO) and, providedt that the roots lie between 0 and 2, two
values of 0 can be found for a given pair of values of t and f3, i.e. for a given axial load, spring
sttffness and foundation condition for column M. These two values of 0 lead to particular
solution pairs of the form:

Bn.m = B lIl sin nOI
Dn.m = D lIl sin nO,

and Bn.m = B(21 sin n02
Dn.m = D(2) sin n02.

(29)

A linear combination of these two solution pairs provides the general solution to the difference
eqns (II) and (IS) in the cases where all columns have node n = 0 simply supported.

4. BUCKLING OF THE STRUCTURE
The general solution form derived from eqn (29) is

Bn•m = B(I) sin nO, + B(2) sin n02

Dn.m = " D lIl sin nO] + '2 D(21 sin n02

where '1 and '2 are the ratios of D/B as obtained from eqn (23) or (24).
AtnodeN+I,

BlIl sin (N + 1)8, + B(2) sin(N + 1)02= 0

'IBlI
) sin( N + 1)0, + "B(21 sin(N + 1)02 = 0,

(30)

(31 )

and if a non-zero solution for B lI
) and B(2) is to be found (i.e. if a buckled form is possible), then

Thus,

sin(N + 1)0, = 0 or sin(N + 1)82 = o.

010 O2 = jrr/( N + 1l,
j= I,N.

(32)

(33)

These values of 0 must be used in the buckling criterion, eqn (28), which upon rearrange
ment and the substitution of

becomes

x = I - cos(jrr/( N + 1»,

X 2
- X[( 1- cost) + f3(t - sint)/t 3

] + f3 (1- cost)/t2 = o.

(34)

(35)

In order to determine the lowest critical level of axial load (measured by the non-dimensional
factor t) for a given structure (N, (3), several column buckling mode shapes (j) must be
considered. It is clear from eqn (35) that the effect of there being m columns is confined to
modifying the basic non-dimensional spring stiffness parameter f3* to f3.

5. THE BUCKLING CONDITIONS
The form of the relationship between the critical t value and f3, Nand j is discussed with

reference to specific cases. The relationships are summarised on Fig. 3.

tA detailed examination of this proviso is presented in the Appendix.
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Fig. 3. One and two spring fl : I relationships.

One spring
When N = I, i.e. when only the mid-point of each column is elastically restrained, the only

possible buckling load below the limiting case I = rr (discussed in reference to eqn 9) is
associated with the mode in which fJ = rr/2. For this case eqn (35) becomes (see also Ref. [8])

f3 = (I - tan I)
(36)

For f3 = 0, eqn (35) gives I = 1t'12 and the buckling mode within each column is that of pure
Euler buckling of the full column length 2a, a mode often descriptively known as C-buckling.
With increase in f3 the critical value of ( rises steadily as shown on Fig. 3. At the f3 value rr2

,

eqn (36) shows the critical ( value to be rr. At this load the C-buckling form is still possible but
the form known as S-buckling is also possible. S-buckling involves no extension of the spring
and is a pure second Euler mode for the full length column. For f3 > rr2

, only S-buckling is
possible and the critical ( value does not rise above rr because the spring is no longer absorbing
energy.

Two springs
When N = 2, fJ can take the values 1t'13 and 21t'13.

13 (1 - 2 cos I)
For {} = rr/3, f3 - -;::-:----"-;,-------=---..:.

- 2(1 + sin I - 21 cos I)'

and for fJ = h/3, f3 3 (3 (1 + 2 cos I)
= 2(1 - 3 sin ( + 21 cos I j'

(37)

(38)

The curves for these two cases are also shown on Fig. 3. They cross at f3 = 0.245 rr 2
,

I = 0.744 rr. For f3 ~ 0.24 rr 2
, C-buckling occurs, for 0.245 rr 2 ~ f3 ~ 3rr2/2 S-buckling is involved

and for f3;;' 3rr2/2, the column again buckles but at a load independent of f3. This last load
corresponds to the Euler buckling load of the element length a, and the springs are not
extended.
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More than two springs
The behaviour when there are N springs is an obvious extension of the previous two cases.

For each 81> j :::: I, N the critical t vs f3 relationship lies on a curve similar to those shown in
Fig. 3. Each joins the point f3:::: 0, t:::: j7T/(N + I) to the point f3 :::: (I - cos 8j )7T2, t :::: 7T. The
minimum f3 value required to prevent the springs being strained (i.e. to raise critical t to 7T)

is given by

f3T :::: [1 - cos (N 7T/(N + I ))]7T2
:::: [I + cos (7T/(N + I ))]7T2

•

Clearly, as N becomes larger f3T approaches an upper limit of 27T2
•

(39)

Enveloping curve
The foregoing suggests that for different Nand j, the various curves in the (f3, t) plane given

by eqn (35) all touch a single enveloping curve. This can be found by considering the
one-parameter family of curves given by eqn (35), X being the parameter, whose envelope
obtained by the use of standard procedures (as given, say in Ref. [9]) has equation

[(1- cos tl + f3(t - sin tl/t 3f - 4f3(1- cos tl/t 2
:::: O. (40)

This curve provides a safe (conservative) estimate of the critical load level for a given spring
stiffness. Equation (40) can be manipulated into a form,

(4\)

where

(42)

The axial load factor t is still limited to the range 0,;;; t ,;;; 7T. f31(t) is obviously the lower of the
two and hence the graph of f31(t) as a function of t is the appropriate envelope.

If t is replaced by the alternative non-dimensional parameter

(43)

where

(44)

and if f3 is replaced by

(45)

the plot of the lower envelope p vs s is the close approximation to a quadrant of a circle shown
on Fig. 4, which provides an extremely concise summary of a very general problem.

6. CONCLUSIONS
In defining, by means of the single eqn (35), the buckling criterion for a structure consisting

of any number of simply supported solumns interlinked by any number of equally spaced
braces of any stiffness, and in allowing a range of support conditions for the extreme columns,
the technique presents an extremely efficient method for the determination of the critical load
criterion. The general results obtained are in accord with the particular numerical results given
in Ref. [1]. The method of computation used in Ref. [1] was that of assembling the stiffness
matrix for the structure and iterating the load factor until the matrix became singular. This
provides one point on the plot relating {3, N, M, and t and is very inefficient, specially for many
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Fig. 4. Lower envelope to the spring stiffness: axial load relationships.

columns, in comparison to the technique described in this paper. The fact that a scaling of {3*
allowed the single column curves to be used for multicolumn analysis was noted in Ref. [1], but
the scale factor was derived numerically. This paper provides a proper analytical explanation
and evaluation of the scaling factor, 2(\ - cos a), and presents the formula by which a may be
determined for a greater range of support conditions. A development of the scaling factor
through a physical argument has been presented by Williams [10].

Curves relating the {3 and t factors for columns with non-uniform axial load and non
uniform section properties within their length are presented in [I]. The technique of this paper
cannot be extended to these cases, nor to less regular systems involving non-simple end
support. Reference [I] does, however, show that for many practical applications (e.g. the
analysis of truss compression ch~rds) the curves derived from the constant axial load
constant section properties-simple support assumption provide a not too conservative esti
mate of actual critical loads.
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APPENDIX
Funher examination of the solution of the difference equations

It is now necessary to examine the nature of the roots of the quadratic equation in X = (I - cos 6). given by eqn (35).
namely

F(X) =X' - XI( I - cos tl + fW - sin tllt') +p(1 - cos nit' =o. (AI)
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It is clear that.

F(O) = (3(1- cos I)It 2 > O.

F'(O) = - (1- cos I) - (3(1 - sin I)lt l < 0

F(2) =2(1 + cos tl + (3(2 sin t - t - t cos I)lt l =2( I + cos I) + 4(3cos h(sin ~t - ~t cos ~l)ltl,

which is certainly positive for 0~ t ~ 1T (since cosh> 0 and tan~t > ~t in that range),

F'(2) = 3+ cos t - (3(1 - sin I)lt l,

and it is clear that F'(2) <!' 0 according as

Q '" ( _ (3 + cos I)t l
"", Y I) - . .

t -Sin t
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(A2)

(A3)

(A4)

(A5)

(A6)

From the above. it follows that if the roots are real. then both lie between X = 0 and X = 2 or both are greater than 2.
Furthermore. if the real roots lie between 0 and 2 then the point «(3. I) must lie to the left of the curve (3 = y(l) and if

they are greater than 2 then «(3. I) must lie to the right of (3 = y(l).
The minimum value of F(x) is found to be equal to

I[Q2(1- Sin tl
2

2Q(1 )(I+sint) I 2]_ (t-sinI)2(Q Q )(Q Q-4" t6 ,,-cost --tl-+( -cosl) -- 4t6 "-,,, "-"2). (A7)

where (3,(1) and (32(1) are given in eqn (42).
The graph of (31(1). (32(1) and 'Y(t) are shown in Fig. 5.
It follows that if the point «(3. I) lies in region I, as shown, the roots X are real and since this region is to the left of y.

these real roots lie between 0 and 2 and the theory of the previous sections applies.
If «(3. I) lies in /I both roots are complex. If «(3. I) lies in III, a region to the right of y, both roots are real but greater

than 2.
If eqn (35) has complex roots, then cos IJ is complex and it follows that the simple solution pair,

B. =sin nlJ, D. = r sin nlJ (A8)

where r is given by the DlB ratio calculated from eqn (23) or (24). must be modified, for now both IJ = p + iq and r = u + iv
are complex. Furthermore. since another simple solution pair can be obtained by taking the complex conjugate of eqn (A8)
it becomes clear that solutions can be obtained by taking the real and imaginary parts of the above solution pair.

In this manner. the following can be obtained:

B•.m = B' Il sin np cosh nq + Bt21 cos np sinh nq.

D•.m = B'" [u sin np cosh nq - v cos np sinh nq J+ B(2) [u cos np sinh nq + v sin np cosh nq]. (A9)

It should be noted that in eqn (A9) B•.m and D•.m both vanish for n = O. However. with the possibility of buckling in
mind. to insist that both BN +l.m and DN + 1•m vanish for non-trivial values of B'" and B'21 would require the vanishing of the
2x 2 coefficient determinant, which here leads to the condition.

v[cosh2(N + \)q - cos2(N + \)p1= o.

which is impossible.

O.S". @
'>

/

\

06" f3=f32( tl

OA". f3=y( f)

02". 0 0
0 10 20 30 40 50 60

f3

Fig. 5. Plots of (3M). (3(1) and y(t).
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Thus there can be no buckling if the point ({3. t) lies in region II.
If ({3. t) lies in region III. the two values of X are real and hence so also is r. But as X > 2. each value of cos 9 must be

less than -I and this implies that 9 is complex and of the form,

IAIO)

The appropriate solution pair is now

B".m = (-I)"[B'" sinh nq, + B'lJ sinh nqlJ

D".m = (- I)"[rB'" sinh nq, + rB'lJ sinh nqlJ.

from which it can also be shown that buckling cannot take place.

(II)


